Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series

نویسندگان

  • Ingmar Nitze
  • Brian W. Barrett
  • Fiona Cawkwell
چکیده

The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types, the ability to discriminate different land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may limit their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8 to 10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Potential of PROBA-V Satellite Image Time Series for Improving LC Classification in Semi-Arid African Landscapes

Satellite based land cover classification for Africa’s semi-arid ecosystems is hampered commonly by heterogeneous landscapes with mixed vegetation and small scale land use. Higher spatial resolution remote sensing time series data can improve classification results under these difficult conditions. While most large scale land cover mapping attempts rely on moderate resolution data, PROBA-V prov...

متن کامل

A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase cla...

متن کامل

The Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image

The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...

متن کامل

Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling

Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their...

متن کامل

Distance metric-based forest cover change detection using MODIS time series

More than 12 years of global observations are now available from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). As this time series grows, the MODIS archive provides new opportunities for identification and characterization of land cover at regional to global spatial scales and interannual to decadal temporal scales. In particular, the high temporal frequency of MODIS provides a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015